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We propose a characterization of the effects of bistable coherent impurities in solid-state qubits. We intro-
duce an effective impurity description in terms of a tunable spin-boson environment and solve the dynamics for
the qubit coherences. The dominant rate characterizing the asymptotic time limit is identified, and signatures of
non-Gaussian behavior of the quantum impurity at intermediate times are pointed out. An alternative perspec-
tive considering the qubit as a measurement device for the spin-boson impurity is proposed.
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Coherent nanodevices are inevitably exposed to fluctua-
tions due to the solid-state environment. Well-studied ex-
amples are charged impurities and stray flux tubes which are
sources of telegraphic noise in a wide class of metallic de-
vices. Large-amplitude low-frequency �mostly 1 / f� noise,
ubiquitous in amorphous materials,1 is also routinely mea-
sured in single-electron-tunneling devices.2 Noise sources
are sets of impurities located in the oxides and in the sub-
strate, each producing a bistable stray polarization. Tele-
graphic noise has also been observed in semiconductor- and
superconductor-based nanocircuits.3 The possible presence
of impurities entangled with the device has been suggested in
Ref. 4. Recent experiments on Josephson qubits indicated
that charged impurities may also be responsible for noise5

exhibiting an Ohmic power spectrum at GHz frequencies.
Different theoretical models have been proposed aiming at a
unified description of broadband noise sources. They share
the common idea that the variety of observed features are
due to the dynamics of ensembles of bistable impurities.5–8

In particular in Ref. 8 it has been proposed that a noise
power spectrum compatible with the observed relaxation of
charge-Josephson qubits5 can be obtained if sets of coherent
impurities are considered.

Solid-state noise also determines dephasing. This issue
has attracted a great deal of interest in recent years since it
has been recognized as a severe hindrance for the implemen-
tation of quantum hardware in the solid state. The effect of
slow noise due to ensembles of thermal9,10 and nonthermal7

fluctuators has been addressed. Slow noise explains the non-
exponential suppression of coherent oscillations observed
when repeated measurements are performed.11,12 In addition
fluctuations active during time evolution represent an un-
avoidable limitation even when a single-shot measurement
scheme or dynamical decoupling protocols13 are available.
Note that at experimental temperatures ��10 mK� quantum
impurities may have a significant influence.

In this Rapid Communication we investigate qubit
dephasing during time evolution due to coupling to a coher-
ent impurity. The full qubit dynamics is solved in the regime
where qubit relaxation processes are absent. We show how
the coherent and nonlinear dynamics of the impurity is re-
flected in the qubit behavior. We identify regimes character-
ized by a strong qubit-impurity back-action. Specifically, we
discuss the dependence on the impurity preparation and beat-
ing phenomena. An alternative interpretation with the qubit

acting as a measurement device for the impurity is presented
at the end of this paper.

Model. We model the impurity as a two-state
system, HI=− 1

2��z− 1
2��x, coupled to the qubit ��� via

HQI=− 1
2v�z�z ��=1�. This anisotropic coupling has been

discussed for charge qubits, where it models the electrostatic
interaction.8–10 In this case the two physical states
��z→ ±1� correspond to a bistable stray polarization of the
qubit. They are viewed as the ground states of a double-well
deformation potential, the impurity oscillating coherently
between them with frequency �I=��2+�2. Dissipative tran-
sitions between the minima come from the interaction with a

bosonic bath14 �HB=����a�
†a�� via HIB=− 1

2 X̂�z. The opera-

tor X̂=��	��a�+a�
†� is a collective displacement with Ohmic

power spectrum S���=2
K� coth �
2T with a high-energy

cutoff at �c �kB=1�.14 This spin-boson environment �SBE�
may induce a variety of qubit dynamical behaviors, since its
degree of coherence depends on K and on temperature T.14

For instance, for weak damping, K�1 a crossover occurs
between a low-“impurity-temperature,” T��I, regime,
where the impurity performs damped oscillations, to the re-
gime of incoherent dynamics if T��I �white noise
S����4
KT�.15

We assume that the qubit Hamiltonian conserves �z;
therefore, the impurity induces pure dephasing14 with no re-
laxation of the qubit.16 This regime is very interesting since
energy exchange processes do not blur decoherence of the
qubit, which is then maximally sensitive to the SBE dynam-
ics. Pure dephasing due to Fano impurities was addressed in
Ref. 9; recently, the asymptotic dynamics has been studied.17

HI

H−

H+

θ+
ε

∆

(a)

∆

|d>
(b)

+

|c>

Ω

|a>

|b>

Ω_
v

v

ε0 Eε−v ε+v

θ_
θ

2φ

FIG. 1. �a� Impurity Bloch sphere. An isolated impurity
HI defines the mixing angle �=arctan � /�; H± define
�±=arctan � / ��±v�. �b� Impurity bands ±�E2+�2: impurity energy
splittings depend on the qubit state, �±=���±v�2+�2. Eigenstates
of H0 are 	
i��, i=a ,b ,c ,d. Conservation of �z allows only intra-
doublet processes a↔b, c↔d.
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This model corresponds to a over-damped impurity �SBE at
K= 1

2 �; here, we consider K�1 where the impurity may be-
have coherently.

For pure dephasing the qubit Hamiltonian can be gauged
away by a proper rotation. In this picture we consider the
reduced density matrix ��t� describing the entangled qubit-
impurity system. For K�1 the interaction with the bosonic
bath is studied by the Born-Markov master equation18 �ME�

�t��t� = − i�H0,��t�� − 
0



dt��1

4
S�t��†�z,��z�t��,��t��‡

+
i

2
��t��†�z,��z�t��,��t��+‡� , �1�

where H0=HQI+HI is the undamped Hamiltonian. Here, the
transform S�t� of the power spectrum and the bath suscepti-

bility ��t�=−i��X̂�t� , X̂�0��+���t� enter the damping term. We
introduce the conditional Hamiltonians of the impurity
H±=− 1

2 ��±v��z− 1
2��x �see Fig. 1� and the eigenvectors of

H0, 	
i��, which are factorized in eigenstates of �z and of
H±.15 The qubit dynamics at pure dephasing is described by
the coherences ��±�t��=Tr���t���x± i�y� � 1��, and in par-
ticular

��−�t�� = ��ac�t� + �bd�t��cos � − ��ad�t� − �bc�t��sin � ,

where �= 1
2 ��−−�+� is a combination of the mixing angles of

H± �Fig. 1�. Since �z is conserved, the damping tensor pre-
sents only four nonvanishing 4�4 diagonal blocks. We fo-
cus on the block acting on the terms entering ��−�t��. Per-
forming a partial secular approximation within this block, we
get two sets of decoupled equations for �ac ,�bd and �ad ,�bc.
We quote here the first set

��̇ac�t�
�̇bd�t�

� = �i� − �1 �12

�21 − i� − �2
���ac�t�

�bd�t�
� , �2�

where �= 1
2 ��+−�−�, Fig. 1. The rates �i, describing dissi-

pative transitions and pure dephasing processes between the
four states and the bosonic bath, read

�1,2 = �+
2����+� + �−

2����−� + �sS�0� ,

�12,21 = �+�−��±��+� + �±��−�� ,

�± =
1

2�2
sin �±; �s =

1

2
sin2�̄ sin2� , �3�

where �̄= 1
2 ��++�−�. Here �±���=2
K��coth�� / 2T �±1� are

the impurity emission �+� and absorption �−� rates of energy
�. The elements �ad ,�bc satisfy similar equations with � re-
placed by �= 1

2 ��++�−� and rates

�3,4 = �+
2����+� + �−

2�±��−� + �cS�0�,

�34,43 = �+�−��±��+� + ����−��,

�c =
1

2
cos2�̄ cos2� .

Diagonalization of Eq. �2� and of the corresponding set for
�ad ,�bc yields the eigenvalues

	1,2 = −
�1 + �2

2
±

1

2
��2i� + �2 − �1�2 + 4�12�21,

	3,4 = −
�3 + �4

2
±

1

2
��2i� + �4 − �3�2 + 4�34�43. �4�

The explicit form of ��−�t�� depends on the initial conditions
for ��t�. Because of the high accuracy of preparation pres-
ently achieved in solid-state implementations, factorized
qubit-impurity states ��0�=���0� � ���0� represent a realistic
scenario. The impurity initial state is instead out of the ex-
perimentalist’s control; thus, we choose ���0�= 1

2 �1�+ pz�z�.
The impurity starts from a totally unpolarized state for
pz=0, from a pure state if pz= ±1. Additional px,y�x,y terms
are not expected to qualitatively effect the qubit dynamics.
This class of initial states guarantees the positivity of the
dynamical process ensuing from Eq. �1�. With this choice we
find

��−�t�� = ��−�0���
i

Aie
	it,

A1,2 =
cos �

2�	1 − 	2�
	cos��	1 − 	2 ± ��12 + �21�� � pz cos�� + �̄�

��− 2i� − �2 + �1 + �12 − �21�� , �5�

A3,4 =
sin �

2�	3 − 	4�
	sin ��	3 − 	4 � ��34 + �43��

� pz sin�� + �̄��− 2i� − �4 + �3 − �34 + �43�� . �6�

Equations �4�–�6� are the main result of this paper. They
cover the regime where S��±���±. Single-phonon pro-
cesses dominate at low T, whereas multiphonon exchanges
are paramount at higher T where the white noise results of
Ref. 15 are recovered. Reliability of ME is confirmed by a
real-time path-integral calculation.

We now focus our analysis on the low-T regime T��−.
Here effects of the dissipative processes internal to the SBE
on the qubit behavior are clearly identifiable. In this limit
energy absorption processes are exponentially suppressed
��−��±��0� and the eigenvalues take the forms

	1 = i� − �sS�0� ,

	2 = − i� −
�r+ + �r+

0 + �r− + �r−
0

4
− �sS�0� ,

	3,4 = ± i� −
�r� + �r�

0

4
− �cS�0� , �7�

where intradoublet relaxation rates �see Fig. 1�

�r± =
1

2
sin2��±�S��±� =

1

2
� �

�±
�2

S��±� �8�

have been introduced ��r±
0 value at T=0�. Note that pure

dephasing processes �S�0� are not a simple sum of intradou-
blet dephasing terms, ��±= 1

2 cos2��±�S�0�.
In the following we present a selection of illustrative be-

haviors for ���. In this regime the two conditional Hamil-
tonians H± may differ significantly and enforce peculiar im-
purity dynamical behaviors: for example, beatings when �
approaches �—i.e., around �=v, which identifies a sort of
“resonance regime” for our problem.
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We first characterize the asymptotic qubit dynamics, by
the T and v dependence of the eigenvalues. At zero tempera-
ture the pure dephasing contributions fade away, and one rate
Re�	1� vanishes, as expected. Only emission processes con-
tribute to the residual rates, and they directly sound out in-
tradoublet relaxation rates �r±

0 . Their behaviors reflect the
sensitivity of H±, to noise acting along �z. While �r+

0 de-
creases with increasing v, �r−

0 takes a maximum at the reso-
nance point �see Eq. �8��, the “transverse” ��−=
 /2� noise
condition for H−. This implies a nonmonotonous dependence
of Re�	2,3� on the coupling v, Fig. 2�a�. The imaginary parts
of 	1,2 and 	3,4 interchange characters at resonance �Fig.
2�a�, inset�, leading to possible hybridization �see below�.
With increasing T the main variation of the rates comes from
the pure dephasing terms � S�0�. As a difference with T=0,
all the rates are finite and cross around resonance, Fig. 2�b�.

These features are crucial for the asymptotic dynamics of
��−�t��, which does not depend on the impurity preparation.
We then expect, at T=0, undamped oscillations with �, while
at finite T, damped oscillations driven by one or two complex
eigenvalues. For example, in the case of Fig. 2�b� the domi-
nant rate is Re�	1� for v�� and Re�	4� for v��. It is a

nonmonotonous function of v and a cusp signals crossing of
eigenvalues �a similar effect may explain the nonmonotonic
behavior of Ref. 17�.

At intermediate times, all eigenvalues may be relevant,
depending on the weights Ai in Eq. �6�. To substantiate this
point, in Fig. 3 we show Ai corresponding to the eigenvalues
in Fig. 2�a� for different preparations. Remarkably, the
weights very weakly depend on T �not shown�; then, the
following picture generally holds for T��−. For extreme
weak coupling, v→0, 
A1 
 �1 �Fig. 3�a��, implying univer-
sal dynamics independent of the initial conditions. The domi-
nant eigenvalue is 	1 with �→0 and ��−�t�� decays exponen-

tially with the golden rule rate �GR= v2

2

S�0�

�2+�2 sin4�. In this
regime the impurity acts as a Gaussian reservoir and may be
described with linear response theory in the coupling v.
Away from this tiny region non-Gaussian effects occur and
different impurity preparations result in different time behav-
iors, giving separate information on the various eigenvalues.
Far from resonance, a single frequency shows up in ��−�t��
independently of pz �� if v��, � if v���. Damping of the
oscillations depends on the initial condition, Figs. 3�b�–3�d�.
For instance, at finite v��, the decay occurs with Re�	1� if
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FIG. 2. �Color online� The four rates Re�	i� from Eqs. �4� for
K=0.1, �=3�. In �a� T=0. Inset: imaginary parts �independent on
temperature for T��+�. In �b� T=0.5�.
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FIG. 3. �Color online� Weights 
Ai
 of e	it from Eq. �6� as a
function of v /�, for T=0, �=3�, and K=0.1. �a� Dominant weights
for small v: 
A1
 �solid symbols�, 
A2
 �open symbols� for pz=0
�squares�, pz=−1 �circles�, and pz=1 �diamonds�. Effect of impurity
preparations: pz=1 �b�, pz=−1 �c�, and pz=0 �unpolarized state� �d�.
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pz=−1, fast decay with Re�	2/3�. Parameters: T=0 orange �light
gray line�, T=0.5� black dashed line, and T=0.9� green �dark gray
line�, K=0.1.
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FIG. 5. �Color online� 
��−�t�� / ��−�0��
 for �=3�, K=0.1. Pan-
els �a�, �b�: resonant impurity v=�. �a� pz=0 at T=0 orange �light
gray line�, T=0.5� black dashed line; �b� T=0 for pz=1 orange
�light gray line�, pz=−1 black line. Panels �c�, �d�: nonresonant case
v=�, T=0 orange �light gray line�, T=0.9� green �dark gray line�
dashed line. In �c� pz=0, in �d� pz=1 top, pz=−1 bottom. Note the
weak T dependence.
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pz=1 and with Re�	2� if pz=−1; both rates are present for
unpolarized initial state. This behavior is stable against tem-
perature variations. Beatings and T dependence are instead
characteristic of the resonant regime. At v=�, at least two
amplitudes are equal, 
A1 
 �
A4
 �pz=1� or 
A2 
 �
A3

�pz=−1�. Damped beatings at �±=�±� are possible due to
the hybridization of ��� �Fig. 2�a�, inset�.

We illustrate these features in Fig. 4 for v=�. The beating
visibility is reduced with increasing T, due the onset of the
pure dephasing processes. For an unpolarized state, pz=0,
��−�t�� shows a intermediate behavior between the ones at
pz= ±1 since at resonance all eigenvalues contribute �Fig.
3�d��. Damping is strongest for pz=−1, weakest for pz=1,
and intermediate for pz=0. In fact, for ���, preparation in
the pure state pz= +1 makes the impurity close to its ground
state and less damped, while it is close to the excited state
when pz=−1 with strongest damping.

In the last part of this paper we present an alternative
perspective, considering the qubit as a measuring device for
a mesoscopic system described by the SBE. Remarkably, the
qubit acts as a detector despite the absence of direct qubit-
SBE inelastic transitions.19 In fact, the pure dephasing cou-
pling amounts to a “dispersive,” quantum nondemolition
measurement regime for the qubit. Detection is feasible due
to the qubit back-action on the SBE. This point of view is

illustrated in Fig. 5, where the length of the Bloch vector in
the x̂-ŷ plane, 
��−�t��
, acts as a sensitive detector of the
mesoscopic system �“impurity”� preparation. At resonance,
the unpolarized state pz=0 is identified by beatings, Fig.
5�a�. These almost disappear for pure states, pz= ±1, where
oscillations at �+ occur, Fig. 5�b�. Identification of the im-
purity preparation far from resonance results instead from
different oscillation amplitudes and/or decay rates, Figs. 5�c�
and 5�d�.

In conclusion, we have identified in time domain non-
Gaussian and back-action effects due to a coherent bistable
impurity. These may represent a ultimate limitation for solid-
state qubits even when single-shot measurement schemes are
available. Our analysis, by changing temperature, strain �,
and coupling v, may provide valuable insights into realistic
scenarios where a wide distribution of the parameters has to
be considered.10 The reported qualitative features are ex-
pected to hold true for general impurity preparation. The
employed SBE represents a general effective model for com-
plex physical baths awaiting specific microscopic descrip-
tion, as those typical of solid-state nanodevices.
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